
PHYSICAL REVIEW E MARCH 1997VOLUME 55, NUMBER 3
Chaotic annealing for optimization
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We study the effect of chaotic transient for a global minima search in optimization. For a given energy or
cost function, a chaotic evolution system in which chaos provides a scheme for searching the minima of the
energy function in the state space can be constructed generally. By controlling a bifurcation parameter from the
chaotic dynamics regime to the fixed-point regime gradually the system may eventually reach the global
optimum state or its good approximation with very high probability. A double potential well and a traveling
salesman problem are used to numerically illustrate the validity of chaotic transient search.
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I. INTRODUCTION

In resent years, the roles or applications of complex
namics, especially of chaos, have drawn great attentio
many fields. One is chaos controlling@1# and synchroniza-
tion @2#. Another field may be the biological implications an
potential applications of chaos in neural networks. Ma
chaotic neural network models have been proposed@3–8#. It
has been pointed out that chaos may play important role
the information processing of neural networks. For exam
Freeman suggested that chaos is necessary for a rabb
memorize new odors@3#; Tsuda suggested that cortical cha
may serve for dynamically linking true memory and
memory search@5#; Naraet al.showed that complex dynam
ics of a recurrent neural network has promising efficiency
a complicated memory search@6#.

Some researchers have considered the application
chaos to global minima search in optimization. In Ref.@7#,
the authors presented a chaotic neurocomputer mode
which each neuron is composed of two coupled logistic
cillators, and the neurons are globally coupled with synap
connections as in the Hopfield model. The authors show
that during the evolution of the chaotic neurocomputer, so
good approximate solutions of a 10 random city travel
salesman problem~TSP! can be visited. Recently, Hoyakaw
et al. studied the performance of the ordinary Hopfield ne
ral network driven by external chaotic noise, pointing o
that short time correlation of chaos could work effective
for a global minima search@8#. In these models, chaos serve
as drive schemes, which enabled the system state to wa
interminably in the phase space.

Compared with conventional methods for optimizatio
using chaos as a global minima search is just at its begin
stage. It is important at this stage to study some simple m
els. In Ref.@8#, external chaotic noise is always present d
ing the evolution of the network. It seems that the avera
amplitude of the chaotic noise may also play an import
role in the performance of the network, which is not stud
in Ref. @8#. In this paper, we consider such a question: w
will happen if chaotic dynamics employed to search the s
space vanishes gradually so that the system is reduced
551063-651X/97/55~3!/2580~8!/$10.00
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to the ordinary stable system? Corresponding to the mode
Ref. @8#, the question is, what will happen if the amplitude
the external chaotic noise is gradually decreased? To ex
ine this question, we present a method for constructing c
otic systems by introducing a simple nonlinear feedback i
the gradient descent systems designed for optimization ta
Chaotic dynamics vanish gradually when a bifurcation p
rameter of the nonlinear feedback is gradually decreased
cording to some scheme, and the chaotic system is redu
back to the original descent one; i.e., reaching a fixed s
eventually. Numerical simulations show that with such
scheme, the system will converge to the global minimum
its good approximations with high probability.

In Sec. II, we show how a chaotic evolution system c
be constructed generally for a given energy function.
simple double potential well is used to illustrate the glob
minimum search process in Sec. III. In Sec. IV, an ene
function of a Hopfield neural network for solving a travelin
salesman problem is used as a practical example. Sectio
is devoted to some discussions and outlooks.

II. DESCRIPTION OF THE MODEL

For simplicity, we discuss the method with only the on
dimensional energy function. Extending the method to m
tidimensional cases is straightforward, as will be shown
Sec. IV.

For a given energy functionE(x), we can construct an
evolution system possessing gradient descent dynamics

x~ t11!5 f „x~ t !…. ~1!

A well-known choice off (x), for example, can bef (x)5(1
2e)x2edE(x)/dx with sufficiently small e. The system
will finally reach a fixed point statexF , which is one of the
minima ofE(x), but is not capable of escaping from it. T
reach the global minima, a mechanism that allows escap
from local minima is required. In@8#, external chaotic noise
is used to excite the state and kick it out of local minim
Our aim here is to introduce some simple new ingredient i
the system, which allows the system to approach or visit
2580 © 1997 The American Physical Society
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55 2581CHAOTIC ANNEALING FOR OPTIMIZATION
local minima, and at the same time enables the system
escape from them. To destabilize the fixed points, a non
ear feedback is introduced into the system, and the evolu
becomes

x~ t11!5 f „x~ t !…1g@x~ t !2x~ t21!#, ~2!

where the feedback is switched on att51 so that onlyx~0! is
sufficient to initialize the system.g is a nonlinear function
satisfying the following demands:~1! It does not change the
original fixed points of Eq.~1!, namely,g~0!50. ~2! y(t)
5x(t)2x(t21) can be regarded as the speed at which
system tends to a fixed point at timet. Largey(t) implies
that the system is far away from a fixed point~local mini-
mum!, and the system is expected to approach a fixed p
almost in a gradient descent way in such a case, which
mands thatg„y(t)… has only a small perturbation on the sy
tem at largey(t); i.e.,g„y(t)… decreases rapidly to 0 at larg
y(t). ~3! At the intermediate value ofy(t), i.e., when the
system comes into some close neighborhood of a local m
mum, the system gets large drive fromg„y(t)…, which may
enable it to climb over the energy hills and drop into oth
energy valleys.

In this paper,g„y(t)… is taken as

g„y~ t !…5py~ t !exp@2uy~ t !u#, ~3!

wherep is a positive tunable parameter.
In fact, Eq.~2! can be rewritten as

x~ t11!5 f „x~ t !…1g„y~ t !…, ~4!

y~ t11!5x~ t11!2x~ t !, ~5!

a two-dimensional evolution system. The stability of a fix
point ~xF ,0! of this system is governed by the Jacobian m
trix at the fixed point, namely,

DF~xF!5SBB21
p
pD , ~6!

where B5@d f(x)/dx#x5xF
. The two eigenvaluesl6 of

DF(xF) are determined by the characteristic equation

l22~B1p!l1p50. ~7!

DenotingD5(B1p)224p, we have

m65ul6u5H U~B1p!6AD
2

U, D>0

Ap, D,0.

~8!

A fixed point is stable if bothm6,1 and is unstable if both
m6.1. It is nonstable~a saddle point! if one of them6 is
larger than 1 and the other is less than 1. For a stable fi
point xF of Eq. ~1!, it must be true thatuBu,1. Under this
restriction, it is always true thatm6,1 for 0<p,1, so that
the fixed point will remain stable forp,1. SinceD,0 at
p51 and the resultedl6 are a complex-conjugate pair, th
bifurcation occurring atp51 ~m651! is a Hopf bifurcation.
The fixed point becomes unstable whenp is larger than 1.0.
It should be noted that the above analysis is true for
stable fixed point of any one-dimensional equilibrium syst
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x(t11)5 f „x(t)…. As for a local maximum ofE(x) corre-
sponding to an unstable fixed point of Eq.~1!, it is true that
d2E/dx2<0 andB.1, which result inm1.1 andm2,1 for
p.0. So an unstable fixed point of Eq.~1! becomes a saddle
node of Eqs.~4! and~5!. The added nonlinear feedback do
not introduce new fixed points into the system. To illustra
the above analysis,m6 are plotted as functions ofp, with
B50.5 in Fig. 1~a! andB51.5 in Fig. 1~b!.

The dynamical behavior far from a fixed point, howeve
depends on the specific form off (x), and can be investigate
with some numerical methods, such as calculating the bi
cation diagrams, the Lyapunov exponents, or the correla
dimension. Generally, whenp is large enough, the system
obtains the ability to wander in the state space, and the
cessible region is larger with largerp, which will be demon-
strated by examples in next sections.

Unlike in Ref. @8#, where the short time correlation o
externalchaotic noise is employed to kick the system out
local minima when it is trapped, in our model,internal
change of the system state is employed in such a way th
enables the system to access and escape from local min
A physical image of the model is that the motion of a partic
~or particles! is governed by a potentialE as well as the
previous momentum, for example, a particle in a poten
field and a nonlinear adhesive medium, although the form
nonlinearity may not have physical realization.

However, the system is not allowed to wander in the st
space interminably, but is reduced back to the stable dyna
cal system by decreasingp gradually according to some
scheme, for example,

p~ t11!5p~1!/ ln~ t !, t52,3,4,... . ~9!

In this paper, we will show that with this scheme the syst
can escape from most of the local minima of the energy
reach the global minimum or its good approximation w
very high probability.

One can see thatg„y(t)… plays a similar role of the tem
perature noise in simulated annealing~SA! @9,10#, with p
being the counterpart of the temperatureT. Due to the simi-
larity to SA, with chaotic search taking the place of stoch
tic search, our method can be referred to as chaotic annea
~CA!, a term used in the following discussion.

FIG. 1. Magnitude of the eigenvalue as a function ofp.
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III. ONE-DIMENSIONAL EXAMPLE

To show how this method works, in this section, w
choose a one-dimensional double well potential as the
ergy function@10#,

E~x!5x4216x215x, ~10!

as shown in Fig. 2.
The chaotic system is built as

x~ t11!5~12e!x~ t !2e@4x~ t !3232x~ t !15#

1g@x~ t !2x~ t21!#. ~11!

We want to illustrate~1! the dynamical structure of th
system and~2! the process of chaotic annealing and its p
formance of optimal optimization.

Let e50.01 in all the simulations. To investigate the d
namical structure of the system, we calculate a bifurcat
diagram and the largest Lyapunov exponentl with respect to
p, as shown in Figs. 3~a! and 3~b!, respectively, with the
same initial statex~0!51.0 for each value ofp. As expected,
a Hopf bifurcation can be clearly detected atp51. Chaos
occurs in several regions wherel.0. Noting that whenp is
larger than some valuep* ~'2.4!, the state begins to wande

FIG. 2. A double well potential.

FIG. 3. ~a! A bifurcation diagram ofx againstp. ~b! The largest
Lyapunov exponentl.
n-

-

n

~periodically, quisperiodically, or chaotically! between the
two energy wells. Such region ofp (p.p* ) is regarded as
~chaotic! wandering region.

Now we choose ap in the wandering region and let i
decrease according to Eq.~9!. From an initial position in the
shallower well the system can escape this local minim
and reach the deeper one, as illustrated by Fig. 4, an exam
of the chaotic annealing process withp~1!57.5 andx~0!54.
Before being stable at the fixed point, the state of the sys
sweeps through the chaotic region ofp. In this sense, the
transient process preceding the stable behavior can be
sidered as a chaotic transient, a term used in later discus

Now we examine the general performance of chaotic
nealing. We choose 1000 random initial statesx~0! uni-
formly distributed on@25,5#. It is found that 52.2% of them
approach the deeper minimum atp~1!50 ~gradient descen
dynamics!, with an average of 9 time steps to satisfyDE
5uE„x(t)…2E„x(t21)…u<0.001. Now chaotic annealing i
carried out, employing the decreasing schedule Eq.~9! from
different p~1!, and 1000 random initial states within@25,5#
for each value ofp~1!. The results are displayed in Fig. 5. I
Fig. 5~a!, PR , the probability of converging to the globa
minimum, increases approximately with increasingp~1!, and
reaches 1.0 whenp~1! is larger than about 7.5. Figure 5~b! is
the corresponding plot of the largest Lyapunov exponenl,
which is computed by fixingp5p~1!, but not decreasing a
Eq. ~9!. It is very interesting that the plot ofPR resembles
that of l. As seen in the plots, ap~1! in the quasiperiodic
regions @l50, e.g., 1.0,p~1!,2.4, 3.5<p~1!<4.0# seems
not a good choice for global optimization, becausePR is not
significantly improved. Unlike the results in Ref.@8#, which
showed that an external drive from periodic windows of t
logistic map is not a good candidate for kicking the syst
out of local minima, here ap~1! in periodic windows@l,0,
e.g.,p~1!52.5, 2.75, 4.25, 4.75, 5.0, 6.5, 7.0, 7.5# seems to
be conducive to a global minimum search. The reg

FIG. 4. Illustration of chaotic annealing process withp~1!57.5.
~a! x, ~b! E.
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55 2583CHAOTIC ANNEALING FOR OPTIMIZATION
p~1!.6 is the most interesting. It is clearly seen in the reg
6,p~1!<7.5 that ap~1! in the chaotic regime is better fo
global optimization than that in periodic windows.PR is fi-
nally improved to 1 whenp~1!.7.5 so that the system be
comes rather chaotic.

The convergence rate of chaotic annealing is mainly g
erned byp~1!. As shown in Fig. 5~c!, the average time step
tav for the system to converge~DE<0.001! is approximately
tav57.3 exp@0.65p~1!#, which is nearly the time steps neede
for p(t) to reach the fixed point regime~p,1.0!.

This example of simple energy landscape has shown
the method has very high probability to approach the glo
minimum as long asp~1! is sufficiently large, which is also
similar to the requirement of sufficiently large initial tem
peratureT in SA. How will this method perform if the en
ergy landscapes are quite complex? This question is stu
in the next section.

IV. EXAMPLE OF COMPLEX ENERGY LANDSCAPE

In this section we apply the chaotic annealing to
Hopfield neural network designed to solve a TSP. The
ergy landscape is much more complex and the dimensio
the system is much higher.

A. The traveling salesman problem

The traveling salesman problem is that givenN cities, a
salesman is expected to find the shortest closed tour, vis

FIG. 5. ~a! PR , the probability of converging to the global min
mum at differentp~1!. ~b! The largest Lyapunov exponents whenp
is fixed atp~1!. ~c! The average time steps for the system to co
verge, which follows approximately an exponential la
tav57.3 exp@0.65p~1!#.
n
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each of theN cities once and only once. Suppose that theN
cities lie within a unit square.L( i , j ) is the link between the
i th city and thej th city @L( i , j ) andL( j ,i ) are considered the
same#, andDi j is the distance between them. We use t
following coding scheme@11#: each neuronVi j ( i, j ) cor-
responds to a linkL( i , j ), andL( i , j ) is taken in the solution
if Vi j51, while it is not ifVi j50. A possible energy function
is

E5E11AE2 , ~12!

where

E15(
i51

N S (
j5 i11

N

Vi j1(
j51

i21

Vji22D 2, ~13!

E25 (
i51

N21

(
j5 i11

N

Vi jDi j . ~14!

E150 assures that each city has two neighbors in the s
tion; E2 is the cost~length! of the solution. However,E150
cannot guarantee that a solution is a feasible tour~one cycle
tour!. Subtours consisting of several cycles also sati
E150. It is an essential difficulty of this coding scheme, a
there is no simple and practical constraint that can be ea
expressed in a neural network. However, some other a
rithms can be introduced to merge several cycles obtaine
the neural network into a single cycle tour@11#, which is not
done in this paper. An advantage of this coding schem
that the number of neurons needed isN(N21)/2, while it is
N2 in the Hopfield method@12#.

We derive the synaptic connections and external input
the neural network by comparing the energy function E
~12! with the general energy expression of the Hopfield n
ral network@12#,

E52~1/2!(
i j

(
kl

Wi jklVi j Vkl2(
i j

I i j Vi j . ~15!

The evolution equations of the chaotic neural network
obtained as

Ui j ~ t11!522F(
k. i

Vik~ t !1(
k, i

Vki~ t !1(
k. j

Vjk~ t !

1(
k, j

Vk j~ t !G2ADi j18

1g@Ui j ~ t !2Ui j ~ t21!#, ~16!

Vi j ~ t11!5 1
2 $11sgn@Ui j ~ t11!#%, ~17!

whereUi j is the local field of neuronVi j .
In this paper, all the simulations are carried out with

10-city problem used in@6#. Figure 6 shows the city distri-
bution and its optimal path, whose length isLop52.735.

-
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2584 55CHANG-SONG ZHOU AND TIAN-LUN CHEN
Since our purpose in this paper is to show the effect of
chaotic transient in a global minima search, we fixA52 in
the following simulations, while we changep~1! and com-
pare the results with that of the Hopfield network.

B. Dynamical property of the chaotic neural network

The system now has a very high dimensionality ofN(N
21)590. So it is not easy to examine the dynamical pro
erty of the system analytically. We employ some numeri
approaches to characterize the dynamical structure. Fir
the bifurcation diagrams of the energyE and the local field
of a neuronU12 againstp are plotted in Fig. 7. For eac
value of p, the system starts from the same random ini
condition and the first 1000 steps are discarded as a tran
process. It is seen that whenp is larger thanp*'0.95, the
system begins to wander in the state space.p* is somewhat
dependent on the initial conditions of the network. The a
pearance of the smeared bifurcation diagram itself is
proof of chaos. To characterize the dynamics further, a
certainp, let the system run for 50 000 steps, and recor
time series ofS( i )5U12(t) for the following n520 000

FIG. 6. The ten random cities and the shortest pathLop52.735.

FIG. 7. A bifurcation diagram of a chaotic neural network wi
respect top. ~a! U12, the local field of neuronV12. ~b! The energy
E of the network.
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steps. A return map of such a time series is plotted in F
8~a! for p54. With this time series, the correlation dime
sion D2 is calculated using the Grassberger-Procac
method@13# in different embedded spaceRM. The correla-
tion function

C~r !5
1

n2 (
i , j

H@r2uS~ i !2S~ j !u# ~18!

where H(x)50 if x<0 while H(x)51 if x.0, and S( i )
5[S( i ),S( i11),...,S( i1M21)], is plotted with respect to
r in Fig. 8~b!. The slope of a plot isD2 in the corresponding
embedded space, which reaches saturation of about 1.61
M.1. A fractal correlation dimensionD251.61360.006
demonstrates that the wandering orbit is chaotic but not
riodic or quasiperiodic. We have also computedD2 at other
p values, for example,D251.26860.002 for p51,
D251.49160.005 forp52, andD251.56860.004 forp53.
Again the regionp.p* is called the~chaotic! wandering
region. During the wandering, the system explores
minima of the energy temporally and resides at them for o
or several time steps. A similar temporal pattern proces
possessed in many models@4,5,7#, which may relate to cha-
otic itinerancy@5#.

C. Searching with chaotic transient dynamics

Now we begin to examine the performance of chao
annealing on this complex energy landscape. Figure 9 is
example of the chaotic annealing process fromp~1!55. As
seen in this figure, whenp is gradually decreased accordin

FIG. 8. ~a! The return mapS( i );S( i11) for p54; ~b! the
log-log plots of correlation functionC(r ) with respect tor in dif-
ferent embedded spaceRM.
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55 2585CHAOTIC ANNEALING FOR OPTIMIZATION
to Eq. ~9!, the system wanders chaotically in the state sp
at first, visiting and escaping some local minima of the e
ergy; at last it comes to a deep minimum~here it is the
optimal one!, from which it cannot escape and will stay the
indefinitely. Before being stable at the optimal minimum, t
system spends 45 time steps in local minima, visiting a
escaping 39 local minima~in some local minima, the system
stays successively for 2 time steps!. Here a local minimum is
referred to a state that hasE150, because when the syste
comes to such a state, it will stay there ifp is set to 0~i.e., it
is a stable state of the Hopfield network!. This process of
searching for the minima ofE is due to the special propertie
of g„y(t)…, which allow the system to draw near a fixe
point, but may drive it away when coming into some regi
around the fixed point. Forp~1! in the fixed point region
(p,p* ), this process is similar, so we do not examine t
region separately, and also call the process as chaotic an
ing even thoughp does not start from the~chaotic! wander-
ing region.

In our next simulation, we start with 100 random initi
conditions. The performances of the descent dynamics of
Hopfield network@p~1!50# and the chaotic annealing ar
compared by plotting the resulting minimal energy in F
10. The improvement of the system performance by cha
annealing is not trivial. For a Hopfield network@p~1!50#,
only 66 of the minima are feasible tours, and none of them
the optimal one. While forp~1!55, all 100 minima are fea-
sible tours, with 76 of them being the optimal one and 16
them the second optimal one; among the other 8 min
only 2 of them have larger energy than those ofp~1!50. The
result demonstrates that chaotic transient dynamics w
much more efficiently than the descent dynamics of
Hopfield model to search for the optimal minimum or
good approximations.

In the following, we investigate the performance of t
chaotic annealing with respect top~1!. Several measures ar

FIG. 9. Illustration of chaotic annealing process of the neu
network withp~1!55. ~a! U12, ~b! E. The resulting stable state i
the optimal minimum.
e
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used to characterize the performance. As has been poi
out, the minima of the energyE may not be feasible tours
our first measure is the probability of finding a feasible to
in a simulation. Another measure is the probability of findi
the optimal tour in the obtained feasible tours. In SA, t
convergence to global minima can be proved analytically
some cases@10#, but it might not be guaranteed for CA
However, in practice, it may not be very fruitful to search t
absolute optimum, and it may be better to find some go
approximations of the absolute optimum in the period
time available, because these approximations and the a
lute optimum may not be significantly different@9#. For ex-
ample, in the present city distribution, the second optim
tour is L52.765, only 1.09% worse than the optimal on
Lop52.735. Based on such considerations, the third mea
used is the probability of finding a solution that is worse th
the optimal one by a certain percentage describing the s
faction of a solution in real optimization tasks. In our sim
lations, we estimate the probability of finding a tour wi
length L<1.05Lop and L<1.1Lop among the obtained fea
sible tours. In fact, only the optimal tour and the seco
optimal tour are included in the regionL<1.05Lop for the
present city distribution.

These four measures are estimated with 1000 random
tial conditions for eachp~1!. For every initial condition, evo-
lution of the network is terminated when it has stayed a
same state successively for 20 time steps. The results
plotted in Fig. 11~a!. In the Hopfield network@p~1!50#, only
about 60% of the resulted minima are feasible tours, a
among these feasible tours, more than 95% of them
longer than 1.1Lop and only 2 of the 1000 random initia
conditions lead to the optimal tour. Once the chaotic anne
ing is employed, the values of all these four measures
improved at once. Specifically, forp~1!50.2, the system es
capes from almost all those minima, which are not feasi
tours; more than 70% of the obtained tours are within 1.1Lop
and more than 25% of the obtained tours are the optimal
or the second optimal one. Whenp~1! is large enough~about
p~1!.5.5! most of the initial conditions~'96%! will finally
lead to the optimal tour or the second optimal tour. T

l

FIG. 10. Minimal energyEmin obtained with 100 random initia
conditions. Dots for Hopfield network@p~1!50# and plusses for
chaotic annealing withp~1!55. Most of the minimal energy ob-
tained by chaotic annealing are the global minimum.
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2586 55CHANG-SONG ZHOU AND TIAN-LUN CHEN
probability of converging to the optimal tour in a simulatio
is improved up to about 0.8.

Similar to the one-dimensional case, the convergence
of the system is mainly determined byp~1!. The average
time needed for the system to converge is approxima
tav520.8 exp@0.70p~1!# for p~1! in the wandering region, a
shown in Fig. 11~b!. The time is longer than that of th
Hopfield network. However, if considering the operation
random reinitializing the system once it reaches a sta
state, the number for obtaining the optimal minimum duri
a sufficiently long period of timets is

N~ ts!5
ts
tav

Pop, ~19!

wherePop is the probability of obtaining the optimal tour i
a simulation. When measured byN(ts), chaotic annealing is
also much better than the Hopfield network, as illustrated
the ratio

FIG. 11. Performance of chaotic annealing with respect top~1!.
~a! Plot 1 ~cross! is the probability of finding a feasible tour; plot
~dot! is the probability of finding the optimal tourLop among the
obtained feasible tours; plot 3~square! and plot 4~triangle! are the
probability of finding a tour among the obtained tours, with leng
L<1.05Lop andL<1.1Lop, respectively.~b! Average time steps for
the network to converge. Again it follows approximately an exp
nential law tav520.8 exp@0.70p~1!# for p~1! in the wandering re-
gion @aboutp~1!.1#. ~c! R.
te

ly

f
le

y

R5
N~ ts! of chaotic annealing

N~ ts! of Hopfield network
~20!

shown in Fig. 11~c!.
We close this section with the conclusion that chao

annealing works much more efficiently than the Hopfie
model for a global minima search.

V. DISCUSSION

We have studied the role of chaotic transient in glob
optimization tasks. For a given energy function, we provid
general method for constructing a chaotic system based
the corresponding gradient descent system. The constru
system maintains some trend of quick descent to lo
minima, and at the same time has some chance of esca
from them. This property is utilized to search the loc
minima quickly. Chaos, which is generated temporally
searching for the minima in the state space, gradually v
ishes when a bifurcation parameter is decreased gradual
is shown that chaotic transient dynamics can serve as a m
efficient global minima search than descent dynamics. T
model is much simpler than that in Ref.@7# where it seems
harder to analyze the role of chaos because an energ
function is not defined there@8#.

Exploring the application of chaotic dynamics, includin
chaos control and synchronization has drawn much rese
attention recently. Unlike controlling chaos to a desired u
stable periodic orbit by small modification of a system p
rameter, we control the system to a fixed state, which is
global minimum or its good approximations of the ener
function of the system.

In a sense, we have developed a general chaotic anne
method for global optimization. The properties of the no
linear self-feedback in this paper enable the method to
applied to a variety of energy minimum problems. Wh
considering practical applications, our model has some
vantages over the simple chaotic model in Ref.@8#. For a
given energy function and the corresponding gradient
scent system, many factors, such as the amplitude, the d
bution, and the correlation of the external chaotic noise w
affect the performance of network in Ref.@8#, while the per-
formance of our network is only governed by the initi
value of parameterp, which is welcome for practical appli
cations. Since our method is similar to simulated annea
in many ways, it should be meaningful in the future to co
pare it with simulated annealing as well as other conv
tional methods for optimization.

Adding some simple new ingredients such as the s
feedback in this paper to stable system seems to be a
direct way to construct systems with complex dynami
which should prove useful when considering the applicatio
of the complex dynamics in technology.

ACKNOWLEDGMENT

This project was supported by National Basic Resea
Project ‘‘Nonlinear Science’’ and the National Nature Sc
ence Foundation of China.

-



55 2587CHAOTIC ANNEALING FOR OPTIMIZATION
@1# E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett.64, 1196
~1990!.

@2# L. Pecora and T. L. Carroll, Phys. Rev. Lett.64, 821 ~1990!.
@3# W. J. Freeman, Biol. Cybern.56, 139 ~1987!.
@4# K. Aihara, T. Takabe, and M. Toyoda, Phys. Lett. A144, 333

~1990!.
@5# I. Tsuda, Neural Networks5, 313 ~1992!.
@6# S. Nara, P. Davis, and H. Totsuji, Neural Networks6, 963

~1993!.
@7# M. Inoue and A. Nagayoshi, Phys. Lett. A158, 373 ~1991!.
@8# Y. Hayakawa, A. Marumoto, and Y. Sawada, Phys. Rev. E51,

R2693~1995!.
@9# S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science220,

671 ~1983!.
@10# H. Szu and R. Hartley, Phys. Lett. A122, 157 ~1987!.
@11# X. Xu and W. T. Tsai, Neural Networks4, 193 ~1991!.
@12# J. J. Hopfield and W. D. Tank, Biol. Cybern.52, 141 ~1985!.
@13# P. Grassberger and I. Procaccia, Physica D9, 189 ~1983!.


