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Chaotic annealing for optimization
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We study the effect of chaotic transient for a global minima search in optimization. For a given energy or
cost function, a chaotic evolution system in which chaos provides a scheme for searching the minima of the
energy function in the state space can be constructed generally. By controlling a bifurcation parameter from the
chaotic dynamics regime to the fixed-point regime gradually the system may eventually reach the global
optimum state or its good approximation with very high probability. A double potential well and a traveling
salesman problem are used to numerically illustrate the validity of chaotic transient search.
[S1063-651%97)14603-7

PACS numbes): 05.45+b, 82.20.Mj, 43.72+q

[. INTRODUCTION to the ordinary stable system? Corresponding to the model in
Ref.[8], the question is, what will happen if the amplitude of
In resent years, the roles or applications of complex dyihe external chaotic noise is gradually decreased? To exam-
namics, especially of chaos, have drawn great attention ife this question, we present a method for constructing cha-
many fields. One is chaos controlling] and synchroniza- Otic systems by introducing a simple nonlinear feedback into
tion [2]. Another field may be the biological implications and the gradient descent systems designed for optimization tasks.
potential applications of chaos in neural networks. ManyChaotic dynamics vanish gradually when a bifurcation pa-
chaotic neural network models have been propd8ed). It rameter of the nonlinear feedback is gradually decreased ac-
has been pointed out that chaos may play important roles ifording to some scheme, and the chaotic system is reduced
the information processing of neural networks. For exampleback to the original descent one; i.e., reaching a fixed state
Freeman suggested that chaos is necessary for a rabbit gyentually. Numerical simulations show that with such a
memorize new odork3]; Tsuda suggested that cortical chaosScheme, the system will converge to the global minimum or
may serve for dynamically linking true memory and a its good approximations with high probability.
memory searc[ﬁ]; Naraet al. showed that Comp|ex dynam_ In Sec. Il, we show how a chaotic evolution system can
ics of a recurrent neural network has promising efficiency inPe constructed generally for a given energy function. A
a complicated memory sear¢]. simple double potential well is used to illustrate the global
Some researchers have considered the applications 8tinimum search process in Sec. lll. In Sec. IV, an energy
chaos to global minima search in optimization. In Rgf, ~ function of a Hopfield neural network for solving a traveling
the authors presented a chaotic neurocomputer model Falesman problem is used as a practical example. Section V
which each neuron is composed of two coupled logistic osis devoted to some discussions and outlooks.
cillators, and the neurons are globally coupled with synaptic
connections as in the Hopfield model. The authors showed Il. DESCRIPTION OF THE MODEL
that during the evolution of the chaotic neurocomputer, some
good approximate solutions of a 10 random city traveling For simplicity, we discuss the method with only the one-
salesman prob]emTSF) can be visited. Recenﬂy, Hoyakawa dimensional energy function. EXtending the method to mul-
et al. studied the performance of the ordinary Hopfield ney-tidimensional cases is straightforward, as will be shown in
ral network driven by external chaotic noise, pointing outSe€c. IV.
that short time correlation of chaos could work effectively ~FOr a given energy functiof(x), we can construct an
for a global minima searcf8]. In these models, chaos served €volution system possessing gradient descent dynamics as
as drive schemes, which enabled the system state to wander
interminably in the phase space. X(t+1)="f(x(1)). (1)
Compared with conventional methods for optimization,
using chaos as a global minima search is just at its beginning well-known choice off (x), for example, can bé&(x)=(1
stage. It is important at this stage to study some simple mod= €)x— edE(x)/dx with sufficiently small e. The system
els. In Ref.[8], external chaotic noise is always present dur-will finally reach a fixed point statgg, which is one of the
ing the evolution of the network. It seems that the averageninima of E(x), but is not capable of escaping from it. To
amplitude of the chaotic noise may also play an importanteach the global minima, a mechanism that allows escaping
role in the performance of the network, which is not studiedfrom local minima is required. 1f8], external chaotic noise
in Ref.[8]. In this paper, we consider such a question: whais used to excite the state and kick it out of local minima.
will happen if chaotic dynamics employed to search the stat®ur aim here is to introduce some simple new ingredient into
space vanishes gradually so that the system is reduced battle system, which allows the system to approach or visit the
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local minima, and at the same time enables the system to 45

escape from them. To destabilize the fixed points, a nonlin- @ 3; —m  B=05 -

ear feedback is introduced into the system, and the evolution 3 '

becomes EH Z-ZA
x(t+D=fO)+gXO-Xt-D], () i T

where the feedback is switched ontatl so that onlyx(0) is g

sufficient to initialize the systeng is a nonlinear function ® 5} —m B=15

satisfying the following demandsi) It does not change the 4 - e

original fixed points of Eq.1), namely,g(0)=0. (2) y(t) "

=X(t) —x(t—1) can be regarded as the speed at which the E 2

system tends to a fixed point at tinmelLargey(t) implies 40

that the system is far away from a fixed poitacal mini- —

mum), and the system is expected to approach a fixed point % 12 3 4 5

almost in a gradient descent way in such a case, which de- p

mands thag(y(t)) has only a small perturbation on the sys-

tem at largey(t); i.e., g(y(t)) decreases rapidly to O at large FIG. 1. Magnitude of the eigenvalue as a functiorpof

y(t). (3) At the intermediate value of(t), i.e., when the

system comes into some close neighborhood of a local minix(t+1)=f(x(t)). As for a local maximum ofE(x) corre-
mum, the system gets large drive framy(t)), which may  sponding to an unstable fixed point of Ha), it is true that
enable it to climb over the energy hills and drop into otherd?E/dx*<0 andB>1, which result irm,>1 andm_<1 for

energy valleys. p>0. So an unstable fixed point of E{.) becomes a saddle
In this paperg(y(t)) is taken as node of Eqs(4) and(5). The added nonlinear feedback does
not introduce new fixed points into the system. To illustrate
g(y(t)=py(t)exd —[y(t)[], (3 the above analysisn. are plotted as functions gf, with

B=0.5 in Fig. a) andB=1.5 in Fig. Xh).
The dynamical behavior far from a fixed point, however,
depends on the specific form 6fx), and can be investigated

wherep is a positive tunable parameter.
In fact, Eq.(2) can be rewritten as

X(t+1)=f(x(t))+g(y(t)), (4)  with some numerical methods, such as calculating the bifur-
cation diagrams, the Lyapunov exponents, or the correlation
y(t+1)=x(t+1)—x(t), (5 dimension. Generally, whep is large enough, the system

_ _ _ 3 ~ obtains the ability to wander in the state space, and the ac-
a two-dimensional evolution system. The stability of a fixedcessible region is larger with largpr which will be demon-
point (xg ,0) of this system is governed by the Jacobian ma-strated by examples in next sections.

trix at the fixed point, namely, Unlike in Ref. [8], where the short time correlation of
externalchaotic noise is employed to kick the system out of
DF(xp)= B p) (6) local minima when it is trapped, in our modehternal
B-1 p/)’ change of the system state is employed in such a way that it

B . enables the system to access and escape from local minima.
where B—[df(x)/d?(]X:XF. The two elg_en_values\.t of A physical image of the model is that the motion of a particle
DF(xg) are determined by the characteristic equation (or particles is governed by a potentidE as well as the

previous momentum, for example, a particle in a potential

2— =
A= (B+p)A+p=0. @) field and a nonlinear adhesive medium, although the form of
DenotingD = (B+ p)2—4p, we have nonlinearity may not have physical realization.
’ However, the system is not allowed to wander in the state
B+p)++D space interminably, but is reduced back to the stable dynami-
(B+p)+ D=0 _ :
_ DS i e— = cal system by decreasing gradually according to some
m.=|\.|= @ scheme, for example,

Jp, D<O0.

A fixed point is stable if bothm_<1 and is unstable if both

m.>1. It is nonstablga saddle pointif one of them.. is In this paper, we will show that with this scheme the system
larger than 1 and the other is less than 1. For a stable fixedan escape from most of the local minima of the energy and
point xg of Eq. (1), it must be true thatB|<1. Under this reach the global minimum or its good approximation with
restriction, it is always true thah.. <1 for O<p<1, so that very high probability.

the fixed point will remain stable fop<1. SinceD <0 at One can see thaj(y(t)) plays a similar role of the tem-
p=1 and the resulted. are a complex-conjugate pair, the perature noise in simulated annealit®A) [9,10], with p
bifurcation occurring ap=1 (m..=1) is a Hopf bifurcation.  being the counterpart of the temperatireDue to the simi-
The fixed point becomes unstable whetis larger than 1.0. larity to SA, with chaotic search taking the place of stochas-
It should be noted that the above analysis is true for anyic search, our method can be referred to as chaotic annealing
stable fixed point of any one-dimensional equilibrium system(CA), a term used in the following discussion.

p(t+1)=p(1)/In(t), t=2,34.... 9
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I1l. ONE-DIMENSIONAL EXAMPLE f“?

To show how this method works, in this section, we 'aoo mo 400 eoo mo 1000
choose a one-dimensional double well potential as the en- t

ergy function[10],

FIG. 4. lllustration of chaotic annealing process wiifl)=7.5.

E(x)=x*—16x*+5x, (10  @x, (b E.
as shown in Fig. 2.
The chaotic system is built as (periodically, quisperiodically, or chaotica)lybetween the
two energy wells. Such region @f (p>p*) is regarded as
X(t+1)=(1— e)x(t)— [ 4x(t)3—32x(t) + 5] (chaotig wandering region. _ _ _
Now we choose @ in the wandering region and let it
+g[x(t) —x(t—1)]. (11 decrease according to E@). From an initial position in the

shallower well the system can escape this local minimum
We want to illustrate(1) the dynamical structure of the and reach the deeper one, as illustrated by Fig. 4, an example
system and?2) the process of chaotic annealing and its per-of the chaotic annealing process wijikil)=7.5 andx(0)=4.
formance of optimal optimization. Before being stable at the fixed point, the state of the system
Let e=0.01 in all the simulations. To investigate the dy- sweeps through the chaotic region pf In this sense, the
namical structure of the system, we calculate a bifurcatiofransient process preceding the stable behavior can be con-
diagram and the largest Lyapunov exponemtith respectto  sidered as a chaotic transient, a term used in later discussion.
p, as shown in Figs. @) and 3b), respectively, with the Now we examine the general performance of chaotic an-
same initial statex(0)=1.0 for each value of. As expected, nealing. We choose 1000 random initial state®) uni-
a Hopf bifurcation can be clearly detectedmt1. Chaos formly distributed or{—5,5]. It is found that 52.2% of them
occurs in several regions whexe-0. Noting that wherp is ~ approach the deeper minimum atl)=0 (gradient descent
larger than some valug* (~2.4), the state begins to wander dynamicg, with an average of 9 time steps to satisfyE
=|E(x(t))—E(x(t—1))|<0.001. Now chaotic annealing is
carried out, employing the decreasing schedule(Bqfrom
different p(1), and 1000 random initial states withjr-5,5]
for each value op(1). The results are displayed in Fig. 5. In
Fig. 5a), Py, the probability of converging to the global
minimum, increases approximately with increaspi@), and
reaches 1.0 whep(1) is larger than about 7.5. Figurél is
the corresponding plot of the largest Lyapunov exponent
which is computed by fixingp=p(1), but not decreasing as
Eqg. (9). It is very interesting that the plot dPz resembles
that of \. As seen in the plots, p(1) in the quasiperiodic
regions[A=0, e.g., 1.8<p(1)<2.4, 3.5<p(1)<4.0] seems
0.2} not a good choice for global optimization, becatsgis not
V4550 significantly improved. Unlike the results in R¢8], which
showed that an external drive from periodic windows of the
P logistic map is not a good candidate for kicking the system
out of local minima, here @(1) in periodic windowg\<O0,
FIG. 3. (a) A bifurcation diagram ok againsip. (b) The largest e.g.,p(1)=2.5, 2.75, 4.25, 4.75, 5.0, 6.5, 7.0, Y<eems to
Lyapunov exponenk. be conducive to a global minimum search. The region
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each of theN cities once and only once. Suppose thatkhe

cities lie within a unit squard.(i,j) is the link between the
ith city and thejth city [L(i,j) andL(j,i) are considered the
samd, andDj; is the distance between them. We use the
following coding schemégl1]: each neuronv;; (i<j) cor-
responds to a link (i,j), andL(i,]j) is taken in the solution
if Vi =1, while it is not ifVij =0. A possible energy function
is
E=E;+AE,, (12
where
N N i-1 2
Ei=2 | 2 Viy+2 Vi-2], (13
: i=1\j=i+1 =1
10000
100k (€ e N-1 N
E,= ViiDi; . 14
“3 100L 2 izlj;—l ij“ij ( )
10 - - -
F E,=0 assures that each city has two neighbors in the solu-
1 2 3 4 5 6 7 8 8 10 tion; E, is the cost(length of the solution. Howeverz;=0

p(1) cannot guarantee that a solution is a feasible tone cycle
tour). Subtours consisting of several cycles also satisfy
E,=0. It is an essential difficulty of this coding scheme, and
FIG. 5. (a) PR, the probability of converging to the global mini- there is no simple and practical constraint that can be easily
mum at differenp(1). (b) The largest Lyapunov exponents when expressed in a neural network. However, some other algo-
is fixed atp(1). (c) The average time steps for the system to con-rithms can be introduced to merge several cycles obtained by
verge, which follows approximately an exponential law the neural network into a single cycle tdur], which is not
ta=7.3 ex0.65(1)]. done in this paper. An advantage of this coding scheme is
that the number of neurons neededNidN—1)/2, while it is
N2 in the Hopfield method12].
p(1)>6 is the most interesting. It is clearly seen in the region  We derive the synaptic connections and external inputs of
6<p(1)<7.5 that ap(1) in the chaotic regime is better for the neural network by comparing the energy function Eq.
global optimization than that in periodic windowBg, is fi-  (12) with the general energy expression of the Hopfield neu-
nally improved to 1 whemp(1)>7.5 so that the system be- ra| network[12],
comes rather chaotic.
The convergence rate of chaotic annealing is mainly gov-
erned byp(1). As shown in Fig. £c), the average time steps

t,, for the system to convergd E<0.00)) is approximately E= _(1/2)%: %: WiikIViJVkl_%.: lij Vij - (15
to=7.3 exp0.65(1)], which is nearly the time steps needed
for p(t) to reach the fixed point regim@<1.0). The evolution equations of the chaotic neural network are

This example of simple energy landscape has shown thajptained as
the method has very high probability to approach the global
minimum as long ap(1) is sufficiently large, which is also
similar to the requirement of sufficiently large initial tem-
peratureT in SA. How will this method perform if the en- UiJ(Hl):_z[kZi Vik(t)’Lkzi Vki(t)+gj Vik()
ergy landscapes are quite complex? This question is studied
in the next section. Sy (t)}—AD 8

= .

IV. EXAMPLE OF COMPLEX ENERGY LANDSCAPE

. . . . +o[U;i(t)—U;(t=1)1, (16)

In this section we apply the chaotic annealing to a
Hopfield neural network designed to solve a TSP. The en-
ergy landscape is much more complex and the dimension of Vij(t+1)=H1+sgfuy(t+1)1}, (17)
the system is much higher.

whereU;; is the local field of neuroiv;; .
In this paper, all the simulations are carried out with a
The traveling salesman problem is that giWercities, a  10-city problem used ifi6]. Figure 6 shows the city distri-
salesman is expected to find the shortest closed tour, visitinution and its optimal path, whose length lig,=2.735.

A. The traveling salesman problem
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Since our purpose in this paper is to show the effect of the 3 204 //f‘//
chaotic transient in a global minima search, weAix2 in BF (b)

the following simulations, while we chang®1) and com- -30
pare the results with that of the Hopfield network. 14 12 -10 -elo: r-4 20 2
2

B. Dynamical property of the chaotic neural network

The system now has a very high dimensionalityN(iN lo Fkl)G. ?t.)téa)of-rchoerrgla;tji:)nn :‘TJ?]F():?l(oIZtNrS (iv;ti)refgr (f;ﬁ; (ibn) (;ir:‘e

—1)=90. So it is not easy to examine the dynamical prop- g-log p (r) P i
> -+ ferent embedded spa&’.

erty of the system analytically. We employ some numerical

approaches to characterize the dynamical structure. Firstly,
the bifurcation diagrams of the ener@yand the local field steps. A return map of such a time series is plotted in Fig.

of a neuronU,, againstp are plotted in Fig. 7. For each 8(a) for p=4. With this time series, the correlation dimen-

value of p, the system starts from the same random initial ion D. is calculated using the Grassberaer-Procaccia
condition and the first 1000 steps are discarded as a transienp 2 9 9

process. It is seen that whegnis larger thanp*~0.95, the metr}od[l_3] in different embedded spad®". The correla-
system begins to wander in the state sp@deis somewhat tion function
dependent on the initial conditions of the network. The ap-
pearance of the smeared bifurcation diagram itself is not 1
proof of chaos. To characterize the dynamics further, at a C(r)=— 2, H[r—|S(i) -] (19
certainp, let the system run for 50 000 steps, and record a n= ]
time series ofS(i)=U,,(t) for the following n=20 000
where H(x) =0 if x<0 while H(x)=1 if x>0, and (i)
=[S(i),S(i+1),...S(i+M—1)], is plotted with respect to
3 S . r in Fig. 8b). The slope of a plot i®,, in the corresponding
- © THEHEHIHEH embedded space, which reaches saturation of about 1.613 for
e ,””“““””””“ M>1. A fractal correlation dimensiorD,=1.613+0.006
1 N demonstrates that the wandering orbit is chaotic but not pe-
L onenE riodic or quasiperiodic. We have also compui2gl at other
PR eeiaii p values, for example, D,=1.268-0.002 for p=1,
D,=1.491+0.005 forp=2, andD,=1.568+0.004 forp=3.
Again the regionp>p* is called the(chaoti) wandering
SR INEIHT region. During the wandering, the system explores the
] L ilgg il’i'm minima of the energy temporally and resides at them for one
3 i““!i“ill“lhml or several time steps. A similar temporal pattern process is
i HHLHIE
I :

12

u

O ® 0N DD MbbiosnOsnD

E

IS AT TR possessed in many mod¢i5,7], which may relate to cha-
- BTN EE L otic itinerancy[5].

0 02040608 1 12141618 2
¢] C. Searching with chaotic transient dynamics

4

Now we begin to examine the performance of chaotic

FIG. 7. A bifurcation diagram of a chaotic neural network with annealing on this complex energy landscape. Figure 9 is an

respect tap. (a) U;,, the local field of neurotVy,. (b) The energy ~ example of the chaotic annealing process frp(t)=>5. As
E of the network. seen in this figure, whep is gradually decreased according
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FIG. 10. Minimal energyE,,;, obtained with 100 random initial
conditions. Dots for Hopfield networkp(1)=0] and plusses for
chaotic annealing wittp(1)=5. Most of the minimal energy ob-
tained by chaotic annealing are the global minimum.
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FIG. 9. lllustration of chaotic annealing process of the neuralused to characterize the performance. As has been pointed
network withp(1)=5. (&) U,,, (b) E. The resulting stable state is out, the minima of the energg may not be feasible tours,
the optimal minimum. our first measure is the probability of finding a feasible tour
in a simulation. Another measure is the probability of finding

to Eq. (9), the system wanders chaotically in the state spacd'® OPtimal tour in the obtained feasible tours. In SA, the
at first, visiting and escaping some local minima of the en-convergence to global minima can be proved analytically in
ergy; at last it comes to a deep minimughere it is the SOome case$10], but it might not be guaranteed for CA.
optimal ong, from which it cannot escape and will stay there However, in practice, it may not be very fruitful to search the
indefinitely. Before being stable at the optimal minimum, the@bsolute optimum, and it may be better to find some good
system spends 45 time steps in local minima, visiting andpproximations of the absolute optimum in the period of
escaping 39 local minimén some local minima, the system time available, because these approximations and the abso-
stays successively for 2 time stepdere a local minimum is  lute optimum may not be significantly differef8]. For ex-
referred to a state that h&s =0, because when the system ample, in the present city distribution, the second optimal
comes to such a state, it will stay therepifs set to O(i.e., it ~ tour is L=2.765, only 1.09% worse than the optimal one,
is a stable state of the Hopfield netwprRhis process of L,,=2.735. Based on such considerations, the third measure
searching for the minima df is due to the special properties used is the probability of finding a solution that is worse than
of g(y(t)), which allow the system to draw near a fixed the optimal one by a certain percentage describing the satis-
point, but may drive it away when coming into some regionfaction of a solution in real optimization tasks. In our simu-
around the fixed point. Fop(1) in the fixed point region lations, we estimate the probability of finding a tour with
(p<p*), this process is similar, so we do not examine thislengthL<1.08_,, andL<1.1L ,, among the obtained fea-
region separately, and also call the process as chaotic annealble tours. In fact, only the optimal tour and the second
ing even thouglp does not start from théchaotig wander-  optimal tour are included in the regidn<1.09.,, for the

ing region. present city distribution.

In our next simulation, we start with 100 random initial ~ These four measures are estimated with 1000 random ini-
conditions. The performances of the descent dynamics of thiéal conditions for eaclp(1). For every initial condition, evo-
Hopfield network[p(1)=0] and the chaotic annealing are lution of the network is terminated when it has stayed at a
compared by plotting the resulting minimal energy in Fig.same state successively for 20 time steps. The results are
10. The improvement of the system performance by chaotiplotted in Fig. 11a). In the Hopfield networkp(1)=0], only
annealing is not trivial. For a Hopfield netwofl(1)=0], about 60% of the resulted minima are feasible tours, and
only 66 of the minima are feasible tours, and none of them immong these feasible tours, more than 95% of them are
the optimal one. While fop(1)=5, all 100 minima are fea- longer than 1.1, and only 2 of the 1000 random initial
sible tours, with 76 of them being the optimal one and 16 ofconditions lead to the optimal tour. Once the chaotic anneal-
them the second optimal one; among the other 8 minimang is employed, the values of all these four measures are
only 2 of them have larger energy than thosg@@f)=0. The  improved at once. Specifically, f@r(1)=0.2, the system es-
result demonstrates that chaotic transient dynamics workapes from almost all those minima, which are not feasible
much more efficiently than the descent dynamics of theours; more than 70% of the obtained tours are withir. g1
Hopfield model to search for the optimal minimum or its and more than 25% of the obtained tours are the optimal one
good approximations. or the second optimal one. Wheitl) is large enougliabout

In the following, we investigate the performance of the p(1)>5.5) most of the initial conditiong~96%) will finally
chaotic annealing with respect p§1). Several measures are lead to the optimal tour or the second optimal tour. The
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" ; N(ty) of chaotic annealin
M‘% R= (ts) g (20

J,,f,/v " N(tg) of Hopfield network

shown in Fig. 11c).

o 05 We close this section with the conclusion that chaotic
annealing works much more efficiently than the Hopfield
model for a global minima search.

——— V. DISCUSSION

We have studied the role of chaotic transient in global
1000 + Sl optimization tasks. For a given energy function, we provide a
'/M’ general method for constructing a chaotic system based on
L& 100 Foerentones” the corresponding gradient descent system. The constructed
system maintains some trend of quick descent to local
®) minima, and at the same time has some chance of escaping
from them. This property is utilized to search the local
minima quickly. Chaos, which is generated temporally for
searching for the minima in the state space, gradually van-
ishes when a bifurcation parameter is decreased gradually. It
is shown that chaotic transient dynamics can serve as a more
K/"\\ (©) efficient global minima search than descent dynamics. The
.~ model is much simpler than that in R¢¥] where it seems
'\‘“‘ harder to analyze the role of chaos because an energylike
function is not defined therg].
ey P Y Exploring the application of chaotic dynamics, including
005115225335445555665 chaos control and synchronization has drawn much research
p(1) attention recently. Unlike controlling chaos to a desired un-
stable periodic orbit by small modification of a system pa-
rameter, we control the system to a fixed state, which is the
FIG. 11. Performance of chaotic annealing with respegt(ig. ~ global minimum or its good approximations of the energy
(a) Plot 1 (cros$ is the probability of finding a feasible tour; plot 2 function of the system.
(dop) is the probability of finding the optimal tour,, among the In a sense, we have developed a general chaotic annealing
obtained feasible tours; plot(@quare and plot 4(triangle) are the  method for global optimization. The properties of the non-
probability of finding a tour among the obtained tours, with lengthlinear self-feedback in this paper enable the method to be
L=<1.08 jp,andL=<1.1 ., respectively(b) Average time steps for applied to a variety of energy minimum problems. When
the network to converge. Again it follows approximately an expo-considering practical applications, our model has some ad-
nential lawt,,=20.8 exp0.7Qp(1)] for p(1) in the wandering re-  yantages over the simple chaotic model in H&f. For a
gion [aboutp(1)>1]. (c) R. given energy function and the corresponding gradient de-
scent system, many factors, such as the amplitude, the distri-
» ) ) i i _bution, and the correlation of the external chaotic noise will
prc_)bablllty of converging to the optimal tour in a simulation g¢ect the performance of network in RE8], while the per-
is improved up to about 0.8. formance of our network is only governed by the initial
Similar to the_ one-_d|men3|ona_l case, the convergence ratgy| e of parametep, which is welcome for practical appli-
of the system is mainly determined f(1). The average caiions. Since our method is similar to simulated annealing
time needed for the system to converge is approximately, many ways, it should be meaningful in the future to com-
t=20.8 exp0.70(1)] for p(1) in the wandering region, as pare it with simulated annealing as well as other conven-
shown in Fig. 11b). The time is longer than that of the tjonal methods for optimization.
Hopfield network. However, if considering the operation of Adding some simple new ingredients such as the self-
random reinitializing the system once it reaches a stablgggpack in this paper to stable system seems to be a very
state,.the number for _obtainipg thg optimal minimum duringgirect way to construct systems with complex dynamics,
a sufficiently long period of time is which should prove useful when considering the applications
of the complex dynamics in technology.

0

ts
=— Pop, (19

tav

N(ts)
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